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ABSTRACT

This paper presents a new physics-based simulation method for flower blossom, which is based on biological observations
that flower opening is usually driven by a boundary-dominant morphological transition in a curved petal. We use an elastic
triangular mesh representing a flower petal and adopt in-plane expansion to induce global bending. Out-of-plane curl plays
an auxiliary role in reducing the curvatures of cross-sections. We also propose to adapt semi-implicit Euler time integrator
for fast simulation results, which has intrinsic damping and at least one order precision. Our system allows users to control
the blossoming process by simply specifying a growth curve, which is easy to design because of the boundary-dominant
property. Experimental results show that our physics-based system runs faster and generates more realistic and convincing
blossom results than the existing simulation methods. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flower blooming earns much wonderfulness in plant devel-
oping: a flower bud expands, opens, warps backward,
wrinkles, and finally grows into an adult flower [1].
Traditionally, studies on flower blooming rely on man-
ual recordings, as shown in the time-lapse videos [2,3],
or recovering dynamic geometry with 3D acquisition
devices [4]. However, such workflows are tedious and time
consuming.

Because of its attractiveness, simulation of flower blos-
som is important in computer animations. Generally, it is
difficult to manually create convincing animations as it
requires much expert knowledge of flowers for the users.
Ijiri et al. [5] introduced a surface-based method for ani-
mating flower blossom, which was based on a previous
observation that the flower blossom is caused by differ-
ences in the cell expansion rate between the inner and
outer sides of petals [6]. However, users have to specify
many growth parameters manually to obtain reasonable
results. Moreover, the method cannot produce some real-
istic effects such as wrinkles, which makes the results
less convincing.

A recent study on biological mechanism of flower
blooming shows that the dynamic deployment of petals
during blooming is a boundary-driven morphological tran-
sition in a curved lamina [7]. Specifically, the boundaries
of petals grow faster than the inner parts of petals [7].
Inspired by this observation, we develop a new flower
blooming simulation method. Our method follows the
boundary-dominant blooming mechanism and assumes
that the bending procedure of a petal is passively induced
by an in-plane expansion with boundary-dominant scheme.
It represents a petal as an elastic triangular mesh, and a
growth map is prescribed to specify the different growing
rates of the petal where its boundaries have larger growth
rates than its inner parts. Thanks to the symmetric (or
nearly symmetric) shape of a petal around its central axis,
we simplify the growth map into a growth curve along the
cross-section of the petal, which makes it easier to specify
the growth parameter in the simulation.

We trigger the deformations of a petal using the
mass-spring model in our simulation with stretching and
bending energy. The joint angle between petal and recepta-
cle increases automatically, producing natural and convinc-
ing flower opening animation. Out-of-plane curl growth
assists to reduce the curvatures of cross-sections, and only
a single parameter is required. Wrinkles on petal bound-
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aries can be produced, making the flower blossom more
realistic. We also engage connected springs, which con-
strain the vertices of flower bud, to simulate the locking
force at the initial blooming stage.

For fast simulation, we turn to semi-implicit Euler
integrators [8], and we introduce a parameter into the
semi-implicit Euler time integration method so that the
integration method has intrinsic damping and preserves at
least one order precision at the same time. The introduced
damping effect can efficiently stabilize the flower bloom-
ing simulation where the rest lengths and the rest angles
change frequently.

2. RELATED WORK

Modeling. The L-system and its variants [9–11] are
well-known tools for plants modeling, but they focused on
branching structure, not dealing with growth of petal tis-
sues of plants. Ijiri et al. [12] presented a system according
to floral diagrams and inflorescences to create models of
3D flowers, while Qin et al. [13] proposed a flower mod-
eling using L-system with Bezier surface. Reconstruction
methods were also suggested. Yan et al. [14] provided a
flower reconstruction method from a single photograph,
while Zhang et al. [15] developed a method to obtain
flower model from 3D point cloud of a single view of
flower. Besides, a volume data reconstruction method was
presented by Ijiri et al. [16] to create flower model from
flower CT. Generally speaking, with these flower model-
ing or reconstruction methods, 3D flower models could
be created, but these methods created only static flower
models and were not suitable to create flower blooming
models varying in time sequence. Although Li et al. [4]
suggested a framework employing a forward–backward
analysis method to analyze the 4D point cloud data from
the recordation of plant growth, several 3D acquisition
devices were needed to get a sequence of flower opening
models, which were usually expensive.
Simulation. Some researchers provided methods for leaf
developing simulation. Wang et al. [17] employed modi-
fied Navier–Stokes equations to simulate plant leaf growth.
Xiao et al. [18] used a minimalist model and the dif-
ferential contraction strain field on the leaf to simulate
the curled dry leaf, while Jeong et al. [19] adopted a
double-layer triangular surface to simulate leaf drying phe-
nomenon. Beautiful leaf developing animation could be
created with the simulation methods. But as flower open-
ing is different from leaf developing, these methods are
not appropriate to produce flower opening animation. Coen
and Rolland-Lagan and their colleagues [6,20] expanded
the local regions to simulate the development of petal sur-
face, but their experiments were limited to flattened 2D
shapes. Ijiri et al. [5] introduced a surface-based method
for flower opening simulation. They specified the growth
parameters of flower by five growth maps: direction map,
elongation and width growth maps for inner and outer sur-
faces. They let inner surface grow faster than outer surface
to bend the petal. However, these growth maps were not

easily designed, and growth maps varying in time were
necessary to obtain convincing results. In application, their
method requires too many parameters for users to spec-
ify, and it was difficult to provide these growth maps for
graphics application. Lu et al. [21] provided a deformation
method for flower opening simulation. They represented
a petal as a parameter equation and changed the corre-
sponding growth parameters to deform the petal. Both
methods were needed to increase the joint angle between
petal and receptacle at every growth iteration to deploy
the flower. Our method employs fewer growth parame-
ters, and the growth parameters are easy to provide based
on boundary-dominant growth. The growth scheme makes
joint angle increase automatically, able to create natural
flowering animations with wrinkles on petal boundaries.
Lu et al. [22] suggested a visualization model for growth
simulation of flower based on cylinder deformation. They
began from a part of cylinder and employed different per-
turbation functions to deform the surface into a petal.
This method could not create convincing flower opening
animation.

Two semi-iterative tools of 3D modeling system were
recommended to model folded surfaces [23,24]. Both of
them deformed elastic surfaces through changing local
regions and minimizing corresponding energy. However,
these tools were designed for only a single surface and
did not provide any mechanism to deploy a flower bud or
bud-like structure.

3. FLOWER BLOOMING
SIMULATION MODEL

Petal notations. A textured flower petal is shown in
Figure 1; and we define some notations. Tip is the top
part of the petal. Petal base is the bottom part of the
petal, which is attached to flower receptacle. Petal axis
refers to the center curve of the petal. Center plane passes
through petal axis and the petal is symmetric to it. Center
part refers to the part around petal axis. There has two
boundary curves in a petal. Cross-section refers to a curve
on the petal surface and is symmetric to the petal axis.

3.1. Physical Model

As a flower petal is much like a thin shell, we employ the
well-known mass-spring model [20,25–27] as our physi-
cal simulation tool. Figure 2 shows a mass-spring system
derived from a petal mesh, and the system consists of the
following components:

� Mass. Every vertex of the petal mesh is thought as a
mass point.

� Linear spring. Vertices are connected with their
neighbors by linear springs.

� Angular spring. A virtual angular spring exists
between normals of two adjacent triangles.
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Figure 1. Notations of a petal. Center plane, to which the petal
is symmetric, is not shown here.

Figure 2. A mass-spring system derived from a petal mesh. na

and nb are the two unit normals of two adjacent triangles.

Denote X D fxi, i D 1, 2, � � � , wg as the set of vertices
of the mesh. Denote E as its edges and @E as the boundary

edges.
ı
E D E�@E is denoted as the inner edges. Following

[28], we define the whole energy U.X/ of the system as
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where L0
ij is the rest edge length of Œxi, xj�, �ij is the dihe-

dral angle between two adjacent triangles sharing edge
Œxi, xj�, �0

ij is the rest dihedral angle, and Ks and Kb are the

stretching stiffness and bending stiffness, respectively. The
internal force vector f.X/ 2 R3w takes the following form:

f.X/ D �rU.X/ (4)

By Newton’s law we have

RX D M�1f.X.t// (5)

where M 2 R3w�3w is the mass matrix, and the dot refers
to derivative with respect to time t.

For the mass-spring system used in our framework, the
growth of the rest length of a linear spring is called the
in-plane expansion, and the growth of the rest angle of an
angular spring is called the out-of-plane curl.

3.2. Global Bending Induced by
In-plane Expansion

Boundary-dominant scheme. Recently, Liang et al. [7]
highlighted the role of boundaries in flower opening and
showed that the dynamic deployment of petals during
blooming was a boundary-driven morphological transition
in a curved lamina. This inspires us to make a flower
petal bend passively using in-plane expansion growth with
a boundary-dominant scheme, specifically, let the bound-
aries of a petal grow at a high rate and center part at a low
rate. The internal force accumulates asynchronously and
induces the global bending. This is not an intuitive scheme;
here, we turn to Figure 3 to explain this mechanism.
In-plane expansion. We formulate the in-expansion
as follows:

L0
ij.t/ D Œ1C A.t/˛.xi, xj/�L

0
ij.0/, Œxi, xj� 2 E (6)

where L0
ij.t/ is the rest length of spring Œxi, xj� at time

t, A.t/ 2 Œ0, 1� is an increasing function, which means
gradual growth, and ˛.xi, xj/ is the growth ratio of spring
Œxi, xj�. The increasing function A.t/ depicts the whole
growth rate of a petal. A linear function A.t/ means
the petal uniformly grows, while usually an S-like curve
reflects the real growth of a plant [29].

3.3. Parameter Setting

Our system describes the maximal growth of a spring by
growth ratio. Because a petal mesh has a 2D surface, the
growth ratios can be given by a growth map [5], which is
usually a color image. In the growth map, the RGB val-
ues specify the maximal growth ratios. In the simulation,
when a growth map is provided, a parametrization that
maps the petal mesh to growth map must be calculated to
load growth parameters for each spring. However, the petal
is not developable and has an ellipse-like structure that
has two boundary curves, while the growth map has four
boundary edges, these result to difficulty in calculating an
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Figure 3. Sole in-plane expansion with boundary-dominant scheme induces the rectangle surface (top) to bend passively, and the
rectangle surface deforms into a saddle-like surface (middle), which is the structure of adult petal (bottom).

appropriate parametrization. Thanks to the symmetry (or
near symmetry) of flower petal and the boundary-dominant
scheme, a growth map can be reduced to a growth curve
under some reasonable assumptions. We assume that the
boundaries of a petal have equivalent growth ratios and
that the petal axis has equivalent growth ratios. We also
assume growth ratios of boundaries gradually decrease to
the growth ratios of petal axis along cross-sections. With
these reasonable assumptions, the growth ratios along each
cross-section share the same values if they are normalized;
thus, the growth ratios of a petal can be represented by a
growth curve (Figure 4). Using the growth curve, we can
automatically assign the parameters from a cross-section
to another one without the necessity to calculate the mesh
parametrization.
Buckling. Although boundary-dominant growth scheme
can bend a flower petal naturally, appropriately spatially
varying parameters are preferred. If the boundaries of a

petal grow too fast, the petal will stop bending at an unde-
sired state. This is owning to physical instability: buckling
[28,30]. The petal buckles its boundaries severely and loses
the boundary-driven force to bend. This phenomenon is
shown in Figure 5.

4. TIME INTEGRATION

Equation (5) is usually solved by numerical integrators in
dynamics simulation. Implicit time integrators are often
the choice to achieve large time step [31]. In the implicit
integrator, a nonlinear equation needs to be solved every
iteration, involving the calculation of Hessian matrix of
the energy function. Due to the high nonlinearity of angu-
lar spring, the calculation of Hessian is cumbersome and
error-prone [32]. In cloth simulation, Baraff et al. [31]
assumed that the normal and edge vectors were of constant
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Figure 4. Under some reasonable assumptions, the growth ratios of a petal, which is represented by an ellipse (a) can be reduced
to a growth curve (b) where each cross-section is normalized into [-1,1].

Figure 5. The petal bends naturally with growth curve 0.2x2 (a). A little buckling is found in (b), while growth curve 0.2x6 results in
severe buckling and undesired opening (c).

magnitudes, making the calculation easy. However, their
assumptions are violated in our case because the vectors
are not constant anymore due to the growth control (see
Equation (6)).
Semi-implicit time integration. Alternatively, we turn to
semi-implicit time integrator [33] for fast simulation, and
we propose the following method:

XnC1 D Xn C hVn C
h2

2
M�1f.Xn/ (7)

VnC1 D Vn C hM�1Œ�f.Xn/C .1 � �/f.XnC1/� (8)

where Xn is the position vector at nth iteration, Vn is the
velocity vector, and M is the mass matrix, h is the time
step, and � 2

h
0, 1

2

i
is a parameter which we call damping

factor. For � D 1
2 , the semi-implicit scheme is equiva-

lent to the well-known Verlet method [34]. However, We
found that the Verlet method caused the vibration of some
regions of the petal mesh in the simulation. This might
be due to the momenta preservation property of the Verlet
method, while the momenta in flower simulation is hard to
control because its deformation energy changes frequently
due to growth control. We thus tried to add explicit damp-
ing into the velocity update, similar to [35], to stabilize
the simulation:

VnC1 D dVn C
h

2
M�1Œf.Xn/C f.XnC1/� (9)

where d represents the damping typically close to 1. In
our experiments, we found it difficult to control the damp-
ing via this method. A large d makes things little better,
while a small one dampens much and makes the whole
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petal buckles. We believe this is due to the explicit damp-
ing, which dampens a specific term, such as the velocity
term in Equation (9). After many iterations, the velocities
of vertices do not coordinate with each other and induce
the buckling. Here, we propose a semi-implicit method
with intrinsic damping when � < 1

2 in Equation (8). From
Equation (7) and Equation (8) we know the semi-implicit
integrator has at least one order precision. Using the
method in our simulation, we usually adjust the damping
factor � 2

h
0, 1

2

i
to control the damping.

5. BLOOMING EFFECTS CONTROL

Center plane constraint. Usually a flower petal is sym-
metric to a plane, called center plane, which passes the
petal axis. But due to the modeling ability of designers
or remeshing, the petal mesh has nonsymmetric topol-
ogy about the petal axis and this causes the nonsymmetric
growth that may result in the adult petal with a little skew
(Figure 6). In the simulation, to deal with this, we con-
strain the distance from vertices of springs, which intersect
the petal axis to center plane unchanged. This can be
imposed via manipulation of velocity update, keeping the
corresponding velocities parallel to center plane.
Petal base. The petal base of natural flower is attached to
receptacle. In the present method, the vertices belonging
to petal base Xbase are fixed in the simulation. Mathemati-
cally, this constraint reads

� rxU.X/ D 0, x 2 Xbase (10)

In the simulation, we set the corresponding forces
zero every iteration. As another benefit of the
boundary-dominant scheme the joint angles between
petals and receptacle increase automatically and naturally.

Connection spring. Occasionally, there are tissue connec-
tions that prevent the flower bud from opening, such as
lily’s lock mechanism that the boundaries of outer petals
are locked in midribs of inner petals. We mimic the tissue
connections by springs, which connect the vertices of two
petals. As the flower starts to open, the connection springs
are extended longer. While connected spring is stretched
to a critical point, the spring will be broken and the flower
starts to open.

Cross-section. Ubiquitously, as the flower blooms, the cur-
vatures of cross-sections get small and adult petals are
flatter than bud petals. In our framework, out-of-plane
curl growth is auxiliary to reduce the curvatures of
cross-sections:

�0
ij .t/ D Œ1 � B.t/ˇ��0

ij.0/, Œxi, xj� 2
ı
E (11)

where �0
ij .t/ is the rest dihedral angle corresponding to

inner spring Œxi, xj� at time t, ˇ 2 Œ0, 1� is the growth param-
eter for out-of-plane curl, and B.t/ 2 Œ0, 1� is an increasing
function, which also means gradual growth. In our sim-
ulation, we usually take B.t/ and A.t/ (see Equation (6))
as the same functions. Figure 7 presents different effects
of parameter ˇ. Usually, as the parameter gets larger, the
curvatures of cross-sections get lower.

Figure 6. A resulting petal is viewed from different sides. The tip is a little skew.

Figure 7. Usually a large parameter ˇ results in small curvatures of cross-sections.
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Wrinkles. Some species of flowers have wrinkles on
boundaries such as asiatic lily whose boundaries wrinkle
as flower opens. The wrinkles result from unequal growth
between petal boundaries and center part to some spe-
cific degree [36,37]. The petal buckles its boundaries and
generates wrinkles [7]. In the simulation, we employ an
additional growth ratio for petal boundaries to generate
wrinkles. Then the growth of petal boundaries has form

L0
ij.t/ D Œ1C A.t/.˛.xi, xj/C ˛add/�L

0
ij.0/ (12)

where ˛add refers to the additional growth ratio and
Œxi, xj� 2 @E. Because thin plate or shell with low stiffness
is easier to buckle [38], we scale the stiffness of bound-
ary springs with a positive factor less than 1 to generate
wrinkles (Figure 8).
Collision detection. A flower usually has several petals,
and during blooming, collisions between petals happen
frequently. To efficiently capture the collisions, we set a
bounding box in which the flower blooms and discretize

the bounding box into small cuboids. Only the vertices and
triangles in a same cuboid or adjacent cuboids can col-
lide. In the simulation, we take the method used in [5] to
handle collision, which is based on the highly specialized
arrangements of flower petals. If a vertex of petal pene-
trates an adjacent petal we push it back with a small offset
(the current offset is 0.01). To avoid the vertex and triangle
to collide, next iteration, we cull off the part parallel to the
normal of triangle from the vertex’s velocity.

6. EXPERIMENTAL RESULTS

We have implemented our simulation system in a
dual-CPU 2.4 GHz computer with 4 GB memory. In our
system, the mesh of a flower is uniformly scaled with an
average edge length of 1. We have tested several kinds
of flowers with different features and different number of
petals to illustrate the performance of our system, as shown
in the paper (also in the accompanying video).

Figure 8. The petal bends outward and wrinkles its boundaries naturally (a). A different viewpoint of the adult petal is shown (b). Real
lily petals with wrinkles (c).

Figure 9. Four frames of a blooming magnolia (top) and its corresponding meshes (bottom).
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Figure 10. Two animations of plum blossom. The first one does not own connected springs in the simulation (top), but the second
one does. In the second one, the flower opens slowly at the beginning and then undergoes a quick opening time (bottom).

Figure 11. While the flower opens, petals curve outward and curvatures of cross-sections decrease.

Figure 12. When applied with the same asiatic lily model, our method produces more convincing animations (b). Results produced
by [5] depend on too many growth parameters, and resulting petals are featureless (a). Our results have beautifully curved petals,

and wrinkles on boundaries can be generated (b). Besides, it takes fewer time with our method.

Table I. Example, stretching stiffness, bending stiffness, growth curve, vertex count, face count,
edge count, and total simulation time. In all our experiments, h D 1.0 is used and we consider

every vertex has mass of 1.

Example Ks Kb Growth curve #V #F #E Total time (seconds)

Figure 9 0.1 0.0005 0.1x2 1805 3077 4876 35
Figure 10 0.1 0.0009 0.2x2 2433 4427 6855 57
Figure 11 0.1 0.0005 0.15x2 1800 3080 4874 35
Figure 12 (b) 0.1 0.0005 0.2x2 2133 3786 5913 44
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6.1. Blooming of Various Flowers

Magnolia. There are many kinds of magnolias. The mag-
nolia shown in Figure 9 has six petals and does not have
wrinkles on petal boundaries. We can see that it opens
naturally with only in-plane expansion.
Plum blossom. Plum blossom has five similar petals and
no wrinkles are observed on petal boundaries. Here, we
create two animations about it. Besides the same in-pane
expansion and out-of-plane curl growth parameters, we
also apply several connected springs to the second one.
Both of them show striking attractiveness (see Figure 10),
while the second one is more vivid. The flower bud opens
slowly at the beginning. When the opening force is strong
enough, the connected springs are broken and the flower
undergoes an abrupt opening.
Lily. Figure 11 shows a blooming lily. At the initial stage,
the cross-sections of petals have large curvatures. As the
flower opens, the petals bend outward and the curvatures of
cross-sections decrease. Finally, the flower stops growing
at a pose with naturally curved petals.

6.2. Evaluations

Comparison. Another lily model is employed in compar-
ison with [5]. This model contains 2133 vertices, 3786
faces, and 5913 edges, and results are shown in Figure 12.
It takes about 11.5 minutes to complete the simulation with
the method of Ijiri et al. [5], while it only needs 44 seconds
with our boundary-dominant method. Besides efficiency
of time, our method requires fewer parameters, which are
easy to provide based on the boundary-dominant scheme.
Our resulting flowers have naturally curved petals and
wrinkles can be produced which beautify much the flower.
Timing. In our experiments, we first run our system with
only one petal. After obtaining convincing results, we sim-
ulate the whole flower blooming. It usually takes within
10 seconds to complete the simulation with only one petal,
and this is fast enough for experiments with various param-
eters. The results in Figures 5, 6, 7, and 8 involve the same
petal with 323 vertices, 567 faces, and 889 edges, and each
simulation of them takes 4 seconds. Table I lists the infor-
mation and the simulation time of the results in Figures 9,
10, 11, and 12.

7. CONCLUSION AND
FUTURE WORK

We have presented a biology-based method for flower
blooming simulation, through which natural flower open-
ing results can be obtained with only a few growth
parameters. Our method takes a boundary-dominant
growth scheme to make flower bend passively and uses
out-of-plane curl to get various results. Some recipes are
proposed to produce more convincing effects. We also sug-
gest to use the semi-implicit time integration to adjust the
damping, which can efficiently stabilize the simulation and

create pleasing results. In our experiences, the simulation
is fast and growth parameters are easy to provide according
to the specific growth scheme. The results demonstrate the
power of our method, and we believe this system is helpful
for flower modeling and blooming animation.
Limitation and future work. Because of the require-
ments of the boundary-dominant scheme, one limitation
of the method is that it is not suitable for flowers having
fused petals, such as trumpet flower. But this is one of our
ongoing researches, and in the future we want to tackle it.
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